FIRST INDUCED PLASTID GENOME MUTATIONS IN AN ALGA WITH SECONDARY PLASTIDS: psbA MUTATIONS IN THE DIATOM PHAEODACTYLUM TRICORNUTUM (BACILLARIOPHYCEAE) REVEAL CONSEQUENCES ON THE REGULATION OF PHOTOSYNTHESIS(1).
نویسندگان
چکیده
Diatoms play a crucial role in the biochemistry and ecology of most aquatic ecosystems, especially because of their high photosynthetic productivity. They often have to cope with a fluctuating light climate and a punctuated exposure to excess light, which can be harmful for photosynthesis. To gain insight into the regulation of photosynthesis in diatoms, we generated and studied mutants of the diatom Phaeodactylum tricornutum Bohlin carrying functionally altered versions of the plastidic psbA gene encoding the D1 protein of the PSII reaction center (PSII RC). All analyzed mutants feature an amino acid substitution in the vicinity of the QB -binding pocket of D1. We characterized the photosynthetic capacity of the mutants in comparison to wildtype cells, focusing on the way they regulate their photochemistry as a function of light intensity. The results show that the mutations resulted in constitutive changes of PSII electron transport rates. The extent of the impairment varies between mutants depending on the proximity of the mutation to the QB -binding pocket and/or to the nonheme iron within the PSII RC. The effects of the mutations described here for P. tricornutum are similar to effects in cyanobacteria and green microalgae, emphasizing the conservation of the D1 protein structure among photosynthetic organisms of different evolutionary origins.
منابع مشابه
Investigations on functional aspects of secondary endocytobiosis using the diatom Phaeodactylum tricornutum as a model organism Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
Diatoms and a variety of other algae evolved by secondary endocytobiosis, i.e. by uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history diatoms possess plastids bound by four membranes. Nucleus encoded plastid preproteins in diatoms have N-terminal bipartite presequences consisti...
متن کاملA Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis
BACKGROUND Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. METHODOLOGY/PRINCIPAL FINDINGS The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotate...
متن کاملProtein targeting into complex diatom plastids: functional characterization of a specific targeting motif
Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a t...
متن کاملLocalization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum
The establishment of a metabolic connection between host and symbiont is a crucial step in the evolution of an obligate endosymbiotic relationship. Such was the case in the evolution of mitochondria and plastids. Whereas the mechanisms of metabolite shuttling between the plastid and host cytosol are relatively well studied in Archaeplastida-organisms that acquired photosynthesis through primary...
متن کاملThe Complete Plastid Genomes of the Two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum
BACKGROUND In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a 'dinotom'. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of phycology
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2009